Exploring modulation spectrum features for speech-based depression level classification

نویسندگان

  • Elif Bozkurt
  • Orith Toledo-Ronen
  • Alexander Sorin
  • Ron Hoory
چکیده

In this paper, we propose a Modulation Spectrum-based manageable feature set for detection of depressed speech. Modulation Spectrum (MS) is obtained from the conventional speech spectrogram by spectral analysis along the temporal trajectories of the acoustic frequency bins. While MS representation of speech provides rich and high-dimensional joint frequency information, extraction of discriminative features from it remains as an open question. We propose a lower dimensional representation, which first employs a Melfrequency filterbank in the acoustic frequency domain and Discrete Cosine Transform in the modulation frequency domain, and then applies feature selection in both domains. We compare and fuse the proposed feature set with other complementary prosodic and spectral features at the feature and decision levels. In our experiments, we use Support Vector Machines for discriminating the depressed speech in a speaker-independent fashion. Feature-level fusion of the proposed MS-based features with other prosodic and spectral features after dimension reduction provides up to ~9% improvement over the baseline results and also correlates the most with clinical ratings of patients’ depression level.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain

This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...

متن کامل

Exploring Low-Dimensional Structures of Modulation Spectra for Robust Speech Recognition

Developments of noise robustness techniques are vital to the success of automatic speech recognition (ASR) systems in face of varying sources of environmental interference. Recent studies have shown that exploring low-dimensional structures of speech features can yield good robustness. Along this vein, research on low-rank representation (LRR), which considers the intrinsic structures of speech...

متن کامل

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Discrimination of speech from nonspeeech in broadcast news based on modulation frequency features

We describe a content based speech discrimination algorithm in broadcast news based on the time-varying information provided by the modulation spectrum. Due to the varying degrees of redundancy and discriminative power of the acoustic and modulation frequency subspaces, we first employ a generalization of SVD to tensors (Higher Order SVD) to reduce dimensions. We further select the optimal prin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014